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Abstract

It is shown that an analytic function taking circles to ellipses must be a Möbius transforma-
tion. It then follows that a harmonic mapping taking circles to ellipses is a harmonic Möbius
transformation.

Analytic Möbius transformations take circles to circles. This is their most basic, most cele-
brated geometric property. We add the adjective ‘analytic’ because in a previous paper [1] we
introduced harmonic Möbius transformations as a generalization of Möbius transformation to har-
monic mappings. Their basic geometric property, the only one we know so far, is that they take
circles to ellipses. In this paper we consider the converse question. We shall show that a harmonic
mapping that takes circles to ellipses must be a harmonic Möbius transformation. We also have
some comments on the situation for analytic functions, in fact we need a similar result for analytic
functions to deal with the harmonic case.

1. Harmonic mappings and harmonic Möbius transformations

We begin with a very brief review of the definition and properties of harmonic mappings and har-
monic Möbius transformations, followed by a statement of our main result. A harmonic, complex-
valued function f defined on a simply connected domain can be written in the form f = h+g, where
h and g are analytic. When f is locally univalent and sense-preserving one has h′(z) ̸= 0 and the
analytic function ω = g′/h′, called the (second) complex dilatation of f , satisfies |ω(z)| < 1. In this
paper we will always assume that a harmonic function f is locally univalent and sense-preserving,
and we refer to f as a harmonic mapping.

On any neighborhood where ω is not zero or has zeros of even order, f lifts to a mapping whose
image is a minimal surface in R3. The metric of the surface has the form ρ|dz| where ρ = |h′|+ |g′|
and the curvature is

K = − |ω′|2

|h′||g′|(1 + |ω|2)
.

We refer to [2] for further background.
We need a few facts on the curvature and the dilatation; see [1] for the details. First, the

curvature is constant if and only if it is zero. This in turn is equivalent to the dilatation being
constant (not necessarily zero), and then to f being of the form f = h + αh for some analytic,
locally univalent function h and a constant α, |α| < 1.

In [1] we introduced the Schwarzian derivative of a harmonic mapping by the formula

S(f) = 2[(log ρ)zz − ((log ρ)z)
2] ,
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and developed several properties analogous to those of the Schwarzian of an analytic function. In
particular, S(f) = 0 if and only if f is of the form f = h + αh where α is a complex constant
with |α| < 1 and h is an (analytic) Möbius transformation. Pursuing the analogy, we defined a
harmonic Möbius transformation to be a harmonic mapping of this form. Since such a map is the
composition of an analytic Möbius transformation with the linear map z 7→ z + αz it follows that
harmonic Möbius transformations take circles to ellipses. (We also see that a harmonic Möbius
transformation is univalent and has a univalent extension to C.) Our purpose here is to close the
loop of equivalences.

Theorem: For a harmonic mapping f the following are equivalent:

(i) The Schwarzian derivative S(f) = 0.

(ii) f = h + αh for some (analytic) Möbius transformation h and some complex constant α with
|α| < 1.

(iii) f takes circles to ellipses.

We note that the Radó-Kneser-Choquet theorem (see [2]) implies that there are harmonic map-
pings of the disk onto a domain bounded by an ellipse, with prescribed boundary correspondence.
Because of this flexibility at the boundary such a mapping need not be a harmonic Möbius trans-
formation, and thus one certainly needs more than one circle going to one ellipse to characterize
Möbius transformations, harmonic or analytic. The theorem is stated in terms of all circles going
to ellipses, and though our proof uses this it may be that one can do with less; see the remarks
after the proof of Proposition 1, below.

2. Analytic functions taking circles to ellipses

The first step in proving the theorem is a result for analytic functions.

Proposition 1: An analytic function f on a domain Ω taking circles to ellipses is a Möbius
transformation.

So, it turns out, the mapping is univalent and the image ellipses are actually circles. This
result would not surprise anyone, but the proof might. Afterward we discuss an example that was
suggested by the an alternate argument.

Proof: It must be that f is not constant; thus, as our arguments will be local, we may assume that
f ′ ̸= 0 on Ω and, by further restricting the domain, that f is univalent. Normalize in the domain
and range so that the closed unit disk lies in Ω and so that f maps |z| = 1 onto the ellipse

u2

a2
+
v2

b2
= 1 with f(0) = 0 , f ′(0) = 1 .

Then f is odd and real on the real axis. For r ≤ 1 the image of the circles |z − r/2| = r/2 are
ellipses symmetric in the real axis and thus the curvatures at f(0) and f(r) are equal. They are
given, respectively, by

1

|f ′(0)|

(
2

r
+ Im

{
−if

′′(0)

f ′(0)

})
and

1

|f ′(r)|

(
2

r
+ Im

{
i
f ′′(r)

f ′(r)

})
,

so that
2

r
=

1

f ′(r)

(
2

r
+
f ′′(r)

f ′(r)

)
,
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because of the normalizations.
A simple integration leads to

f ′(r) =
1

1− cr2
, c ∈ R , 0 < r < 1 ,

hence

f ′(z) =
1

1− cz2

for all z ∈ Ω. From here it would seem clear that we must have c = 0, whence f(z) = z, but it
requires some effort to show this. Here is one approach, a direct one, that exhibits some unexpected
cancelations.

Let f = u + iv. By assumption, the image of |z| = r under f is an ellipse for any 0 < r ≤ 1,
and the equation is

u(reiθ)2

f(r)2
+
v(reiθ)2

|f(ir)|2
= 1 . (1)

Using

f(z) = z +
c

3
z3 +

c2

5
z5 + · · · ,

from the formula for f ′(z), we have

u(reiθ) = r
(
cos θ +

c

3
r2 cos 3θ +

c2

5
r4 cos 5θ +O(r6)

)
,

v(reiθ) = r
(
sin θ +

c

3
r2 sin 3θ +

c2

5
r4 sin 5θ +O(r6)

)
,

f(r) = r
(
1 +

c

3
r2 +

c2

5
r4 +O(r6)

)
,

|f(ir)| = r
(
1− c

3
r2 +

c2

5
r4 +O(r6)

)
.

Substitute into (1) to obtain(
1− c

3
r2 +

c2

5
r4 +O(r6)

)2(
cos θ +

c

3
r2 cos 3θ +

c2

5
r4 cos 5θ +O(r6)

)2

+
(
1 +

c

3
r2 +

c2

5
r4 +O(r6)

)2(
sin θ +

c

3
r2 sin 3θ +

c2

5
r4 sin 5θ +O(r6)

)2

=
(
1 +

c

3
r2 +

c2

5
r4 +O(r6)

)2(
1− c

3
r2 +

c2

5
r4 +O(r6)

)2
. (2)

Now expand and collect terms. On the left-hand side the constant term is 1 and the coefficient of
r2 is

2c

3

(
cos θ cos 3θ − cos2 θ + sin θ sin 3θ + sin2 θ

)
,

which collapses to 0. The coefficient of r4 is
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c2
{(

1

9
+

2

5

)
(cos2 θ + sin2 θ) +

1

9
(cos2 3θ + sin2 3θ) +

4

9
(sin θ sin 3θ − cos θ cos 3θ)

+
2

5
(cos θ cos 5θ + sin θ sin 5θ)

}
,

which simplifies to
2c2

45
(14− cos 4θ) ,

so the left-hand side of (2) in total is

1 +
2c2

45
(14− cos 4θ)r4 +O(r6) .

On the other hand, the right-hand side of (2) is

1 +
26c2

45
r4 +O(r6) .

By comparison of the two results it follows that c = 0, as claimed. This proves Proposition 1.

Another approach to proving this proposition, which we will not present, led us to consider
functions of the form

f(z) = z + a3z
3 + a5z

5 + · · · , a3 ̸= 0 ,

which approximately map concentric circles |z| = r to concentric ellipses with as small an error as
possible. By rescaling f in the domain and range one can assume that a3 = 1. We found that the
function

f(z) = z + z3 + 2z5 + 5z7

satisfies the ellipse equation (1) with an error of size O(r8). (Of course, when r is small the
concentric ellipses are nearly concentric circles.) Furthermore, this is as far as one can go; i.e., no
additional term cz9 will make f satisfy (1) with an error of order O(r10).

As mentioned at the beginning of the proof, Proposition 1 is really a local statement, more accu-
rately an infinitesimal statement — for the proof one needs a shrinking sequence of circles mapping
to ellipses. We do not know what a more global statement might be. Obviously the Riemann
mapping of the unit disk onto the region bounded by an ellipse is not a Möbius transformation, so
one circle can map onto one ellipse without any further conclusions being drawn. (This mapping
is given in terms of elliptic functions, and, if by some chance you have wondered, we now know
for certain that it does not map concentric circles to concentric ellipses.) Though it is true that a
multiply connected domain bounded by circles can be mapped conformally onto one bounded by
ellipses, we might conjecture that a conformal mapping of a simply connected domain cannot take
two circles onto two ellipses.

3. Harmonic mappings taking circles to ellipses

We return now to harmonic mappings, and corresponding to Proposition 1 we have the following
local property.

Proposition 2: A harmonic mapping f on a domain Ω taking circles to ellipses has constant
dilatation.
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Proof: We will show that the dilatation is constant by showing that the curvature of the minimal
surface corresponding to f is zero; recall the remark on this in Section 1. Note that f has no lift
only at the discrete set of points that are odd order zeros of the dilatation, and we may thus confine
our analysis to an arbitrary (small) simply connected domain V where the lift exists.

Write f = h + g and take any z0 ∈ V . By shifting we may assume for simplicity that z0 = 0.
We may assume also that h(0) = g(0) = 0 and that h′(0) = 1. In terms of power series,

h(z) = z + a2z
2 + . . . , g(z) = αz + . . . ,

and |α| < 1 because f is sense preserving. Now, perhaps on a smaller neighborhood U of 0, consider
the harmonic mapping

F (z) = f

(
z

1 + a2z

)
.

Note that F still maps circles to ellipses. Analytically, the effect is to make

F (z) = z + αz + b2z
2 +O(z3) ;

i.e., if we write F = H + G then H ′′(0) = 0. Geometrically, w = z/(1 + a2z) is an analytic
reparametrization of part of the surface corresponding to f . In particular, the curvature is invariant
(this is also easy to check directly from the formula forK), and since 0 maps to 0 we have, in obvious
notation, Kf (0) = KF (0). We will show that KF (0) = 0.

We claim first that b2 = 0. Suppose by way of contradiction that b2 ̸= 0 and consider the image

1

r
F (reiθ) = eiθ + αe−iθ + b2re

−2iθ +O(r2)

of |z| = r for small r, and the curve

φr(θ) = eiθ + αe−iθ + b2re
−2iθ .

The linear part
ψ(θ) = eiθ + αe−iθ

parametrizes an ellipse. Simple considerations show that φr(θ) = ψ(θ) + b2re
−2iθ has exactly 6

intersections with ψ(θ) and that the intersections are transverse. (ψ(θ) goes around once counter-
clockwise while b2re

−2iθ goes around twice clockwise. Incidentally, one can get quite interesting
curves by this kind of perturbation of an ellipse.) Adding a term of size O(r2) will not change the
number of intersections; that is, the ellipse (by assumption)

1

r
F (reiθ) = φr(θ) +O(r2)

intersects the ellipse ψ(θ) at 6 points. This cannot be, and we conclude that b2 = 0.
Finally, the curvature of the surface corresponding to the lift of F (and of f) is

K = − |ω′|2

|H ′||G′|(1 + |ω|2)
,

where ω = G′/H ′. Here we may assume that G′ ̸= 0 on the neighborhood (or on a smaller
neighborhood), for if G′ vanishes identically then G is constant and F , hence f , is analytic, and
the dilatation is zero. The computations with power series now easily imply that ω′(0) = 0, so that

K(z) = |z|2 + · · · ;
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thus K actually vanishes to second order at 0. Since 0 represents an arbitrary point z0 ∈ V , the
curvature therefore vanishes identically and the dilatation of f is therefore constant.

4. Proof of the theorem

We remarked earlier that the statements (i) and (ii) are equivalent and that (ii) implies (iii).
We will complete the proof by showing that (iii) implies (ii).

If a harmonic mapping f takes circles to ellipses then by Proposition 2 its dilatation is constant.
Therefore f = h+αh for some locally univalent analytic function h and a constant α, |α| < 1. Then
h must also map circles to ellipses and by Proposition 1 it is an analytic Möbius transformation.
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